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APPLICATION OF THE EXPLOSION ANALOGY TO THE 

CALCULATION OF HYPERSONIC FLOWS 

0. S. Ryzhov and Ye. D. Terent'yev 

ABSTRACT: The paper analyzes critically the results of previous 
investigators. The possibility of using the analogy between un- 
steady and hypersonic flow around thin bodies may be applied in 
the first approximation to all regions behind the compression 
shock, including the layer adjacent to the body. The paper shows 
that the contour can be determined by proper selection of entropy 
on the particle's trajectory forming the contour, the equation for 
which is found by solving the explosion problem in  Lagrangian 
variables. 
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After Tsien [l], Hayes [2] and A. A. Il'yushin 131 established the analogy between - /622* 
hypersonic flow around thin bodies and nonstationary flows in space with a smaller per 
unit number of measurements, the attention of a number of investigators turned to the 
question of how the steady-state flow relates to the gas motion resulting from a strong 
explosion. In earlier papers [4-81 it was considered that the gas particles in the detona- 
tion of a planar or  string explosive charge move in the same way as do the particles in 
the flow near a blunt plate o r  semi-infinite cylinder set at zero angle of attack with the 
flow. The thicknesses of the bodies in the flow were taken to be vanishingly small and 
the influence of their obtuse nose sections was replaced simply by the effect of the lumped 
force on the surrounding medium, The analogy set up in this way allowed explaining the 
most general characteristic features of both phenomena but had a shortcoming in that the 
density at the surface of the plate turned out to be zero and the entropy infinite. 

In subsequent papers by Cheng [9], V.V. Sychev [ lo ,  111 and Yakura [l2], the con- 
cept of a high-entropy layer was evolved, according to which the thickness of the bodies 
in the flow was increased to infinity downstream but the entropy remained finite over the 
entire contour. In these papers it was emphasized that the flow in the high-entropy layer 
differs from the flow in the remaining space - specifically, the application of the hypo- 
thesis of plane sections to the calculation of this layer leads to the appearance of rela- 
tively large errors.  

' 

The results of V.V. Sychev [lo, 111 and Yakura [12] are critically analyzed, The 
form in which they can be obtained directly from the theory of strong explosions in the 
papers by L.I. Sedov 113, 141 and Taylor [15] is shown. In the problem being considered 
this possibility means that the analogy between nonstationary flows and the hypersonic 
flow around thin bodies may be applied to a first approximation over all regions behind 
the bow compression shock, including the layer adjacent to the body contour. To deter- 
mine the contour itself it is sufficient to select correctly the vaIue of entropy on the par- 
ticle trajectory forming it, the equation for which is found from the solution of the ex- 
plosion problorn in Lngrnngo vnriahlea (1 0 ] @ 

1. We shall assume that the motion of the gas is axisymmetric., but the essential 
conclusions drawn below are  valid for plane-parallel flows as well. We shall label the 
axes of the cylindrical coordinate system x and r, with the x-axis - in the direction of the 

_. - 
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velocity vector of the undisturbed flow. Following [lo-121 we shall consider the inverse 
problem, in which the shape of the compression shock is assigned [r = rs(x)] and the con- 
tour of the body in the flow is found in the process of its solution. Applying the explosion 
analogy to the calculation of hypersonic flows, they assumed that 

where C is an arbitrary constant. 

The principal result obtained by V. V. Sychev [ l o ]  was the definition of the shape - /623 
of the body beyond the point of intersection of the shock front and the center-line of the 
flow. The equation of the body contour, r = rb(x), was given in the form 

Here ?.L is the exponent in the Poisson adiabatic, the function H is the ratio of the 
pressure in the region of disturbed flow to the pressure behind the compression shock, 
and the quantity 

Y 

Formula (1.2) loses validity for small values of x, since the velocity field pertur- 
bations turn out to be finite and can not be described by the theory, which is based on the 
analogy with nonstationary flows. On the other hand, this formula becomes more accur- 
ate the larger the value of x; it is thus reasonable to simplify it by going to the limit, set- 
t ingx + C O .  

For the purpose as stated we shall use the relationship between the variable of in- 
tegration ?J and the self-similar variable h introduced by L.I. Sedov [16]. If we denote 
the ratio of the velocities in  the zone of disturbed flow and behind the shock front of f, 
then [IO]: 

Let us introduce another function g, the ratio between the density at an arbitrary 
point between the compression shock and the body to the density resulting from the strong 
shock compression of the gas. The relationship between the functions f and g and their 
first derivatives is 
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as pointed out in the book by V. P. Korobeynikov, N. S. Mel'nikov and Ye. V. Ryazanov 
[17]. This relationship is easily converted to the form 

From this it follows that 

By definition, H(q) = h(A). Using (1.4) we rewrite (1.3) as 

The expression in  square brackets on the right-hand side of this expression can be 
simplified if we use the integral of the adiabatic [17] 

c 

/624 The function G now takes on the final form - 

On going over from the variable -q to the self-similar variable A in Eq. (1.2) for the 
contour of the unknown body, we have 

With x - co and finite values of A,  the function G - g-l. When A - 0, g - 0 and 
h - ho # 0, as follows from the asymptotic formulas derived by L. I. Sedov [16]. There- 
fore as A - 0 and x - C O ,  the second of the two items in the square brackets on the 
right-hand side of (1.5) can turn out to be larger than the first, and with A = 0 we have 

From this i t  follows that the ratio G/x 4 0 and x - co and with arbitrary values of 
A. Making use of this circumstance, we write the expression 
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To find the asymptotic behavior of the generatrix of the contour of the body (un- 
lcnown) for large values of the x-coordinate, only the first  term of the series (1.7) need 
be used in  computing the integral on the right side of (1.6). It is easy to show that in 
this integral the remainder terms of the series yield a contribution of much lower order 
in x. Hence, a s  a first approximation, we find 

Here the direct expansion into series of the expressions inside the integral is no 
longer possible for  large values of x. Hence we have 

where the parameter E is chosen s o  that on the one hand 

and, on the other, E << 1, According to the condition (1.9) the expansion of the expres- 
sion under the integral in J2 is convenient. Making use of this, we find 

To evaluate the integral J1 we reform the previous expression 

Here the constant go and ho a r e  the coefficients of the first terms of the asymp- /625 
totic expansions of the functions 

2x - 
11 = 110 + I1,hx-l f . , . (1.11) 

with small values of A. Using the asymptotic representation (1.11) it is easily shown 
that the quantity m << 1 for large values of x and 0 rs h 5 E .  
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Taking this inequality into account, we find, to a first approximation 

If we go over from integration over h to integration over p in  accordance with 
(1. lo ) ,  the quantity J1 can be calculated in final form. Retaining only the main terms, 
we have 

We now collect the results obtained and substitute them into (1.8). To sum up, as 
x - co, the behavior of the generatrix contour of the body in the flow will be given by the 
relationship 

(1.12) 

To compare formula (1.12) with the analagous formula from the theory of Yakura 
Y [ 121 it is useful to convert to nondimensional variables by referring the values of the 

coordinates to the radius r* of the shock front at the point where it intersects the axis 
of symmetry. From Eq. (1. l), which defines the shape of the compression shock, it 
follows that 

Taking into account the expressions [16, 171 

for the coefficients go and ho, we give final form to formula (1.12): 

(1.13) 

(1.14) 

(1.15) 

2. Let us come back to the work of Yakura [12]. To find the shape of body cor- 
responding to a shock wave (1.13), a solution of the equations of gas dynamics in it was 
constructed by the now well-developed method of uniting the outer and inner asymptotic 
expansions; the essence of this method is se t  forth in detail in the book by Van Dyke [lS]. 
The outer region of the flow obeyed the solution of L. I. Sedov [13, 141 and Taylor [15] 
for the problem of the strong explosion; the inner expansion yielded the velocity field in 
the layer adjacent to the body in the flow and which possesses high entropy. It was con- 
sidered that perturbation theory [l-31 based on the hypothesis of plane sections and anal- 
ysis with nonstationary flows are not directly applicable to the investigation of flow in a 
high-entropy layer. 
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Analysis of the formulas for the inner expansion 1: 121 was set up from the equation 

for  the generating contour of the unknown body. If the second of the expressions of (1.14) 
is used, it is easily seen that this equation is identical with Eq. (1. E), which follows - /626 
from the relationship (2.1).  In this way, the shape of the body in  the flow corresponding 
to the shock (1.13) is, to a first approximation, identical according to V. V. Sychev and 
Yakura, although the investigative methods on which these works were based were quite 
different. This explains the good qualitative agreement between the results obtained by 
direct evaluation of the integral in (1.2) and those from formula (2.1). Some divergence 
between them is attributable only to the fact that the quantity x/r in [lo, 121 was chosen 
to be relatively small. As evident from what has been said above, there are no more 
profound reasons [ 19 J for this divergence. 

The formulas for the inner expansion of Yakura [12] allow establishing not only the 
contour of the body but also the structure of the contiguous high-entropy layer. The lon- 
gitudinal coordinate x and the flow function Z) are taken as independent variables, and the 
lateral coordinate r is given by 

L9 

Here pW and uco denote the density and velocity in the inflow. Equation (2.1) followsfrom 
4j = 0. After using these relationships the flow function can be expressed in terms of x 
and r, and then we can obtain explicit expressions for the transverse component rr of the 
particle velocity, the pressure p and density p as functions of the cylindrical coordinates. 
Replacing the coefficient ho by its value (1.14) we find, based on [12]: 

Regarding the longitudinal component rx of the particle velocity, its deviation from 
the inflow velocity will be 

We now introduce the entropy expression 

(2.5) 
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which of course depends only on the flow function q~~ The maximum value of entropy oc- 
curs with \f, = 0; it correlates with the compression of the gas in the direct compression 
shock. 

Y 

3.  We now proceed to consider the relationships from the theory of strong explo- 
sions developed by L. I. Sedov [13, 141 and Taylor [E]. Let us call time t and let E be 
a quantity proportional to the entropy developed in the explosion of a string charge of 
unit length. Then the coordinate of the compression shock is 

In applying the analogy to the calculation of hyperonic flow the quantity E was iden- /627 
tified with the constant Fx, which is proportional to the force, and the time t was tied to 
the longitudinal coordinate x using the relationship [4-81: 

t =  2 1  lJ, (3.2) 

Substitution into formula (3.1) yields 

In order for (3.3) to agree with (1.13) the drag coefficient C x l  must be set equal 
to 4; this condition will be considered in detail later. As  L. I. Sedov [16] has pointed out, 
near the explosion center the asymptotic 'expansions 

(3.4) 

apply, in which the coefficients l q  and 1 ~ 2  are related to the exponent of the Poisson ad- 
iabatic as follows; 

By changing over in the expansions (3 .4)  from time t to coordinate x according to 
(3.2) and taking into account the last two equalities, it can be verified that these expan- 
sions agree precisely with formulas (2.3) as derived by Yakura. But this agreement 
also implies the validity of the hypothesis of plane sections El-31 as applied to the high- 
entropy layer immediately adjacent to the surface of the body in the flow. Actually, in 
the paper by Yalura [lZ] the inner expansion was in fact found as the asymptotic solution 
of the strong explosion with r - 0, and then the asymptote found was pieced in with the 
complete solution of this problem. In other words, the analogy between nonstationary and 
hypersonic flows over thin bodies may be used to compute all regions between the com- 
pression shock front and the surface of the body. 
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It remains to consider the question of the shape of the body itself. It is already 
clear that its contour must be formed by the trajectory of one of the particles set  into 
motion by the shock wave. To verify this we make use of the solution of the explosion 
problem in Lagrange variables introduced in the monograph by L. I. Sedov [16]. This 
solution is written in parametric form, with the dimensionless velocity V = tvr/r se- 
lected as the parameter. The value V = 1/(2x) corresponds to the flow symmetry axis. 
Let us  designate by ro the initial coordinate of the particle (which it had prior to the ar- 
rival of the shock front), and we have 

It is easy to check that with small values of A the solution [16] of the strong explo- 
/628 sion problem in Lagrange variables has the following asymptote - - 

,.& 

of the compression shock, we find 
After eliminating the parameter A and using expression (3.3) for the coordinate r3 

(3 .5)  

Formula ( 3 . 5 )  is identical with (1.15) with ro = r*, from which i t  follows that the 
body contour in the flow is formed by the trajectory of a particle se t  into motion by the 
shock wave. The coordinate r o  found is bound up with an appropriate choice of entropy 
on the trajectory-contour. In fact, in the problem of the strong explosion [lS]: 

Changing over to dimensionless variables, we have 

Let us compare the entropies obtained with those specified by (2.5), in which the 
body in the flow corresponds to CP = 0. Both values turn out to be equal with ro = r*. 
Thus, in  the direct application of explosion theory to the calculation of hypersonic flow, 
to define the contour of the body in the flow it is only necessary that the entropy on the 
particle trajectories forming i t  be correctly assigned. This value of entropy is obtained 
in the shock compression of the gas in a hypersonic flow. It will be maximally permis- 
sible inasmuch as the entropy behind an oblique compression shock in the steady-state 
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flow must be lower. On the other hand, according to the solution for the strong explo- 
sion, the particle entropies can increase without limit on approaching the symmetry axis. 
The maximum permissible value of entropy according to relationship (2 .5)  is 

I t  delineates that region of nonstationary flow which may be used for the calculation of 
hypersonic flow. In the remaining portion of the nonstationary flow stemming from a 
strong explosion of a string charge the particle entropies are too high to be found in 
steady-s tate hypersonic flow. 

/629 The streamlines near the body contour a r e  normalized by the relationship - 

as  derived from a comparison of (2.5) and (3.7).  If condition (3 .8)  is satisfied, Eq. (3.5) 
for the path of any particle goes over into (2.2),  which enters into the inner expansion ob- 
tained by Yakura. 

OI 

Correction (2.4) to the longitudinal components of the velocity vector is also easily 
found from the theory of the strong explosion. To do this, it suffices to substitute (3.4),  
reduced to the form (2.3), into the Bernoulli integral 

We note further that according to the theory of small perturbations the particle tra- 
jectories should be determined by the solution of the ordinary differential equation 

I 

Integration yields 

In order to determine the arbitrary constant A in proper form, we substitute the 
asymptotic expansions (3.4) for the pressure and density into the left-hand member of 
Eq. (3.6). Taking account of the relationship (3.9) between the cylindrical coordinates 
and time, A can be calculated from the initial position ro of the particle. It is easy to 
verify that formula (3 .5)  again results on changing over from t to x in accordance with 
(3 .2) .  In this way, the condition of conservation of particle entropy allows establishing 
the correct value of the constant in  the-asymptotic development for i ts  trajectory as 
t -  C Q ,  
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4. In conclusion let  us consider briefly the results of [ll]. This reference also 
deals with the problem of finding the shape of a body generated in a stationary hyperson- 
ic flow shock of the form of (1.1) and (1 .3) .  The Poincari-Lighthill-Ho method of de- 
formed coordinates, included in the book by Van Dyke [18] was used to solve this prob- 
lem. The diameter d of the body’s bluntness was chosen as a scale to which to relate 
values of the cylindrical coordinates. The equation of the shock front was written as 

This formula may be identified with the formula (1.13) used earlier if we set 

Then the scale factor d will in no way differ from the radius r* of curvature of the 
compression shock at the point of intersection with the flow symmetry axis. The equa- 
tion of the contour of the unknown body, according to [ll], appears as 

* 
, where the constant % is expressed through and the coefficient ho used earlier by way 

of the formula 

Making use of this we find at once /630 - 

(4.2) 

If we now take account of (4.1) for the drag coefficient Cxz,  expression (4.2) goes 
over into (1.15) with d = r*. 

As seen from what has been said above, use of the methods of asymptotic expansion 
and deformed coordinates in the inverse problem of defining the shape of the body from 
the shock wave generated by it (1.13) yield the same prescription: We can use the results 
of the theory of the strong explosion without any change whatsoever in the entire region 
between the shock front and the body whose contour is formed by the trajectory of a par- 
ticle having an entropy corresponding to the compression of the gas in a stationary hyper- 
sonic flow in the direct compression shock. 

The authors thank A. A. Dorodnitsyn and V. V. Suchev for their valuable discussions. 
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